1. Sadler CM*, Maslovat D, Cressman EK, Dutil C*. Carlsen AN (in press) Response preparation of a secondary reaction time task is influenced by movement phase within a continuous visuomotor tracking task European Journal of Neuroscience
  2. Teku F*, Maslovat D, Carlsen AN (in press) A TMS-induced cortical silent period delays the contralateral limb for bimanual symmetrical movements and the reaction time delay is reduced on startle trials. J Neurophysiol.
  3. Sadler CM*, Peters KJ*, Santangelo CM*, Maslovat D, Carlsen AN (2022) Retrospective composite analysis of StartReact data indicates sex differences in simple reaction time are not attributable to response preparation. Behav Brain Res 426: 113839
  4. Maslovat D, Sadler CM*, Smith V*, Bui A*, Carlsen AN (2021) Response triggering by an acoustic stimulus increases with stimulus intensity and is best predicted by startle reflex activation. Scientific Reports 11, 23612 PDF pdf
  5. Rothwell JMA, Hallett M, Antal A, Burke D, Carlsen AN, Jahanshahi M, Sternad D, Valls-Solé J, Ziemann U (2021) Central nervous system physiology (Second of special series on the use of clinical neurophysiology for the study of movement disorders). Clin Neurophysiol 132: 3043-3083 PDF pdf
  6. Sadler CM*, Kami AT*, Nantel J, Carlsen AN (2021) Transcranial direct current stimulation of supplementary motor area improves upper limb kinematics in Parkinson’s disease. Clin Neurophysiol 132: 2907-2915. Also selected for additional inclusion in special issue on Transcranial Brain Stimulation:
  7. Maslovat D, Teku F*, Smith V*, Drummond NM*, Carlsen AN (2020) Bimanual but not unimanual finger movements are triggered by a startling acoustic stimulus: evidence for increased reticulospinal drive for bimanual responses. J Neurophysiol 124: 1832-1838
  8. Carlsen AN, Maslovat D, Kaga K. (2020) An unperceived acoustic stimulus decreases reaction time in a patient with cortical deafness. Scientific Reports 10: 5825. PDF pdf
  9. St. Germain L*, Smith V*, Maslovat D, Carlsen AN (2020) Increased stimulus intensity results in an earlier and faster rise in corticospinal excitability. Brain Res 1727: 146559
  10. Smith V*, Maslovat D, Carlsen AN (2020) StartReact effects are dependent upon engagement of startle reflex circuits: Evidence for a subcortically mediated initiation pathway. J Neurophysiol 122:2541-2547.
  11. Smith V*, Maslovat D, Drummond NM*, Hajj J*, Leguerrier A*, Carlsen AN (2019) High intensity transcranial magnetic stimulation reveals differential cortical contributions to prepared responses. J Neurophysiol 121:1809-1821.
  12. Carlsen AN, and Maslovat D (2019) Startle and the StartReact effect: Physiological mechanisms J Clin Neuroplysiol, 36:452-459.
  13. Hajj J*, Maslovat D, Cressman EK, St. Germain L*, Carlsen AN, (2019) Visual processing is diminished during movement execution. PLoS One, 14(3): e0213790. PDF pdf
  14. Smith V, Maslovat D, Drummond NM, Carlsen AN (2019) A timeline of motor preparatory state prior to response initiation: Evidence from startle. Neurosci 397:80-93 pdf
  15. Maslovat D, Hajj J, Carlsen AN (2018) Coactivation of response initiation processes with redundant signals. Neurosci Lett 675:7-11.
  16. Drummond NM, Cressman EK, Carlsen AN (2018) Increased response preparation overshadows neurophysiological evidence of proactive selective inhibition. Psychology & Neurosci 11:1-17.
  17. Smith V, Carlsen AN (2018) Subthreshold transcranial magnetic stimulation applied after the go-signal facilitates reaction time under control but not startle conditions. Eur J Neurosci, 47:333-345.
  18. Maslovat D, Carter MJ, Carlsen AN (2017) Response preparation and execution during intentional bimanual pattern switching. J Neurophysiol 118:1720-1731.
  19. Drummond NM, Cressman EK, Carlsen AN, (2017) Offline continuous theta burst stimulation over right inferior frontal gyrus and pre-supplementary motor area impairs inhibition during a go/no-go task. Neuropsychologia. 99:360-367.
  20. Drummond NM, Hayduk-Costa G, Leguerrier A, Carlsen AN, (2017) Effector-independent reduction in choice reaction time following bi-hemispheric transcranial direct current stimulation over motor cortex. PloS ONE. PDF pdf
  21. Carter MJ, Smith V, Carlsen AN, Ste-Marie DM (2017) Anodal transcranial direct current stimulation over the primary motor cortex does not enhance the learning benefits of self-controlled feedback schedules. Psych Res 82:496-506
  22. Carter MJ, Maslovat D, Carlsen AN (2017) Intentional switches between coordination patterns are faster following anodal-tDCS applied over the supplementary motor area. Brain Stim. 10:162-164. PDF pdf
  23. Drummond NMCressman EK, Carlsen AN (2017) Go-activation endures following the presentation of a stop-signal: Evidence from startle. J Neurophysiol. 117:403-411.
  24. Drummond NM, Leguerrier A, Carlsen AN (2016) Foreknowledge of an impending startling stimulus does not affect the proportion of startle reflexes or latency of StartReact responses. Exp Brain Res. 235:379-388.
  25. Drummond NMCressman EK, Carlsen AN (2016) Startle reveals decreased response preparatory activation during a stop-signal task. J Neurophysiol. 116:986-994. PDF pdf
  26. Kennefick M, Maslovat D, Chua, Carlsen AN (in press) Corticospinal excitability is reduced in a simple reaction time task requiring complex timing. Brain Research. Accepted Apr 04, 2016. PDF pdf
  27. Maslovat D, Drummond NM, Carter MJ, Carlsen AN (2015) Startle activation is additive with voluntary cortical activation irrespective of stimulus modality. Neurosci Lett. 606:151-155. pdf
  28. Carlsen AN (2015) A broadband acoustic stimulus is more likely than a pure tone to elicit a startle reflex and prepared movements. Physiological Rep. 3:e12509. pdf
  29. Maslovat D, Drummond NM, Carter MJ, Carlsen AN (2015) Reduced motor preparation during dual-task performance: Evidence from startle. Exp Brain Res. 233:2673-2683 pdf
  30. Wright ZA, Carlsen AN, MacKinnon CD, Patton JL (2015) Degraded expression of learned feedforward control in movements released by startle. Exp Brain Res. 233:2291-2300.
  31. Maslovat D, Chua R, Carlsen AN, May C, Forgaard CJ, Franks IM (2015) A startling acoustic stimulus interferes with upcoming motor preparation: Evidence for a startle refractory period. Acta Psycol. 158:36-42. pdf
  32. Maslovat D, Franks IM, Carlsen AN (2015) Responses to startling acoustic stimuli indicate that movement-related activation does NOT build up in anticipation of action. J Neurophysiol. 113:3453-3454. .
  33. Eagles JS, Carlsen AN, MacKinnon CD (2015) Neural processes mediating the preparation and release of focal motor output are suppressed or absent during imagined movement. Exp Brain Res. 233:1625-1637. pdf
  34. Maslovat D, Franks IM, Leguerrier A, Carlsen AN (2015) Responses to startling acoustic stimuli indicate that movement‐related activation is constant prior to action: a replication with an alternate interpretation. Physiological Rep. 3:e12300. pdf
  35. Carlsen AN, Eagles JS, MacKinnon CD (2015) Transcranial direct current stimulation over supplementary motor area modulates the preparatory activation level in the human motor system. Behav Brain Res. 279:68-75. pdf
  36. Carter MJ, Maslovat D, Carlsen AN (2015) Increased stability of bimanual coordination following transcranial direct current stimulation (tDCS) applied over the supplementary motor area (SMA). J Neurophysiol. 113:780-785.
  37. Carter MJ, Carlsen AN, Ste-Marie DM (2014) Self-controlled feedback is effective if it is based on the learner's performance: A replication and extension of Chiviacowsky and Wulf [2005]. Front Psychol. 5:1325. pdf
  38. Drummond NM, Cressman EK, Carlsen AN (2015) Inhibition of motor-related activation during a visuomotor mental rotation task. Behav Neurosci. 129:160-169. pdf
  39. Kennefick M, Maslovat D, Carlsen AN (2014) The time course of corticospinal excitability during a simple reaction time task. PLoS ONE. 9(11):e113563. pdf
  40. Ravanelli N, Cramer MN, Molgat-Seon Y, Carlsen AN, Jay O (2014) Rate of heat storage does not influence exercise intensity at a fixed rating of perceived exertion. Eur J Appl Physiol. 114: 2399-2410. pdf
  41. Maslovat D, Carter MJ, Kennefick M, Carlsen AN (2014) Startle neural activity is additive with normal cortical initiation-related activation. Neurosci Lett. 558:164-168. pdf
  42. Bajema M, MacKinnon CD, Carter MJ, Kennefick M, Perlmutter S, Carlsen AN (2013) Pause time alters the preparation of two-component movements. Exp Brain Res. 231:85-96.
  43. Forgaard CJ, Maslovat,D, Carlsen AN, Chua R, Franks IM (2013) Startle reveals independent preparation and initiation of triphasic EMG burst components in targeted ballistic movements. J Neurophysiol 110:2129-2139. pdf
  44. Hayduk-Costa G, Drummond NM, Carlsen AN (2013) Anodal tDCS over SMA decreases the probability of withholding an anticipated action. Behav Brain Res. 257:208-214. pdf
  45. Maslovat D, Chua R, Spencer HC, Forgaard CJ, Carlsen AN, Franks IM (2013) Evidence for a response preparation bottleneck during dual-task performance: Effect of a startling acoustic stimulus on the psychological refractory period. Acta Psychol 144:481-487.
  46. Carlsen AN, Almeida QJ, Franks IM (2013) Using a startling acoustic stimulus to investigate underlying mechanisms of bradykinesia in Parkinson’s disease. Neuropsychologia 51:392-399.
  47. Drummond NM, Carlsen AN, Cressman EK (2013) Motor Preparation is delayed for both directly and indirectly cued movements during an anticipation-timing task. Brain Res 1506:44-57.
  48. Carlsen AN, Almeida QJ, Franks IM (2012). Startle decreases reaction time for active inhibition. Exp Brain Res 217:7-14.
  49. Maslovat D, Carlsen AN, Franks IM (2012) Subcortical motor circuit excitability during simple and choice reaction time. Behav Neurosci 126:499-503.
  50. Carlsen AN, Maslovat D, Franks IM (2012) Preparation for voluntary movement in healthy and clinical populations: Evidence from startle. Clin Neurophysiol 123:21-33. pdf
  51. Maslovat D, Carlsen AN, Franks IM (2012) Investigation of stimulus-response compatibility using a startling acoustic stimulus. Brain Cognition 78:1-6. pdf
  52. Carlsen AN, Lam MY, Maslovat D, Chua R (2011) Reaction time effects due to imperative stimulus modality are absent when a startle elicits a pre-programmed action. Neurosci Lett 500:177-181. pdf
  53. Carlsen AN, Maslovat D, Lam MY, Chua R, Franks IM (2011) Considerations for the use of a startling acoustic stimulus in studies of motor preparation in humans. Neurosci Biobehav Rev 35:366-376. pdf
  54. Forgaard CJ, Maslovat,D, Carlsen AN, Franks IM (2011) Default motor preparation under conditions of response uncertainty. Exp Brain Res 215:235-245.
  55. Carlsen AN, Mackinnon CD (2010) Motor preparation is modulated by the resolution of the response timing information. Brain Res 1322:38-49.
  56. Carlsen AN, Chua R, Inglis JT, Sanderson DJ, Franks IM (2009) Differential effects of startle on reaction time for finger and arm movements. J Neurophysiol 101:306-314. pdf
  57. Carlsen AN, Chua R, Summers JJ, Inglis JT, Sanderson DJ, Franks IM (2009) Precues enable multiple response preprogramming: Evidence from startle. Psychophysiol 46:241-251.
  58. Maslovat D, Carlsen AN, Chua R, Franks IM (2009) Response preparation changes during practice of an asynchronous bimanual movement. Exp Brain Res 195:383-392.
  59. Carlsen AN, Chua R, Inglis JT, Sanderson DJ, Franks IM (2008) Motor preparation in an anticipation-timing task. Exp Brain Res 190:453-461.
  60. Carlsen AN, Chua R, Dakin CJ, Sanderson DJ, Inglis JT, Franks IM (2008) Startle reveals an absence of advance motor programming in a Go/No-go task. Neurosci Lett 434:61-65.
  61. Maslovat D, Carlsen AN, Ishimoto R, Chua R, Franks IM (2008) Response preparation changes following practice of an asymmetrical bimanual movement. Exp Brain Res 190:239-249.
  62. Carlsen AN, Maslovat D, Chua R, Franks IM (2007) Perceptual processing time differences owing to visual field asymmetries. Neuroreport 18:1067-1070.
  63. Carlsen AN, Dakin CJ, Chua R, Franks IM (2007) Startle produces early response latencies that are distinct from stimulus intensity effects. Exp Brain Res 176:199-205
  64. Cressman EK, Carlsen AN, Chua R, Franks IM (2006) Temporal uncertainty does not affect response latencies of movements produced during startle reactions. Exp Brain Res 171:278-282.
  65. Carlsen AN, Kennedy PM, Anderson KG, Cressman EK, Nagelkerke P, Chua R (2005) Identifying visual-vestibular contributions during target-directed locomotion. Neurosci Lett 384:217-221.
  66. Kennedy PM, Cressman EK, Carlsen AN, Chua R (2005) Assessing vestibular contributions during changes in gait trajectory. Neuroreport 16:1097-1100.
  67. Carlsen AN, Chua R, Inglis JT, Sanderson DJ, Franks IM (2004) Can prepared responses be stored subcortically? Exp Brain Res 159:301-309.
  68. Carlsen AN, Chua R, Inglis JT, Sanderson DJ, Franks IM (2004) Prepared movements are elicited early by startle. J Motor Behav 36:253-264.
  69. Carlsen AN, Chua R, Inglis JT, Sanderson DJ, Franks IM (2003) Startle response is dishabituated during a reaction time task. Exp Brain Res 152:510-518.
  70. Carlsen AN, Hunt MA, Inglis JT, Sanderson DJ, Chua R (2003) Altered triggering of a prepared movement by a startling stimulus. J Neurophysiol 89:1857-1863. pdf
  71. Kennedy PM, Carlsen AN, Inglis JT, Chow R, Franks IM, Chua R (2003) Relative contributions of visual and vestibular information on the trajectory of human gait. Exp Brain Res 153:113-117.

Comments are closed.